63 research outputs found

    Mutations of the BRAF gene in human cancer

    Get PDF
    Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma

    Peg-interferon lambda treatment induces robust innate and adaptive immunity in chronic hepatitis B patients

    Get PDF
    IFN-lambda (IFNλ) is a member of the type III IFN family and is reported to possess anti-pathogen, anti-cancer, and immunomodulatory properties; however, there are limited data regarding its impact on host immune responses in vivo. We performed longitudinal and comprehensive immunosurveillance to assess the ability of pegylated (peg)-IFNλ to augment antiviral host immunity as part of a clinical trial assessing the efficacy of peg-IFNλ in chronic hepatitis B (CHB) patients. These patients were pretreated with directly acting antiviral therapy (entecavir) for 12 weeks with subsequent addition of peg-IFNλ for up to 32 weeks. In a subgroup of patients, the addition of peg-IFNλ provoked high serum levels of antiviral cytokine IL-18. We also observed the enhancement of natural killer cell polyfunctionality and the recovery of a pan-genotypic HBV-specific CD4+ T cells producing IFN-γ with maintenance of HBV-specific CD8+ T cell antiviral and cytotoxic activities. It was only in these patients that we observed strong virological control with reductions in both viral replication and HBV antigen levels. Here, we show for the first time that in vivo peg-IFNλ displays significant immunostimulatory properties with improvements in the main effectors mediating anti-HBV immunity. Interestingly, the maintenance in HBV-specific CD8+ T cells in the presence of peg-IFNλ is in contrast to previous studies showing that peg-IFNa treatment for CHB results in a detrimental effect on the functionality of this important antiviral T cell compartment

    Survival of the Fittest: Positive Selection of CD4+ T Cells Expressing a Membrane-Bound Fusion Inhibitor Following HIV-1 Infection

    Get PDF
    Although a variety of genetic strategies have been developed to inhibit HIV replication, few direct comparisons of the efficacy of these inhibitors have been carried out. Moreover, most studies have not examined whether genetic inhibitors are able to induce a survival advantage that results in an expansion of genetically-modified cells following HIV infection. We evaluated the efficacy of three leading genetic strategies to inhibit HIV replication: 1) an HIV-1 tat/rev-specific small hairpin (sh) RNA; 2) an RNA antisense gene specific for the HIV-1 envelope; and 3) a viral entry inhibitor, maC46. In stably transduced cell lines selected such that >95% of cells expressed the genetic inhibitor, the RNA antisense envelope and viral entry inhibitor maC46 provided the strongest inhibition of HIV-1 replication. However, when mixed populations of transduced and untransduced cells were challenged with HIV-1, the maC46 fusion inhibitor resulted in highly efficient positive selection of transduced cells, an effect that was evident even in mixed populations containing as few as 1% maC46-expressing cells. The selective advantage of the maC46 fusion inhibitor was also observed in HIV-1-infected cultures of primary T lymphocytes as well as in HIV-1-infected humanized mice. These results demonstrate robust inhibition of HIV replication with the fusion inhibitor maC46 and the antisense Env inhibitor, and importantly, a survival advantage of cells expressing the maC46 fusion inhibitor both in vitro and in vivo. Evaluation of the ability of genetic inhibitors of HIV-1 replication to confer a survival advantage on genetically-modified cells provides unique information not provided by standard techniques that may be important in the in vivo efficacy of these genes
    corecore